Learning Latent Factor Models of Human Travel

نویسندگان

  • Michael Guerzhoy
  • Aaron Hertzmann
چکیده

This paper describes probability models for human travel, using latent factors learned from data. The latent factors represent interpretable properties: travel distance cost, desirability of destinations, and affinity between locations. Individuals are clustered into distinct styles of travel. The latent factors combine in a multiplicative manner, and are learned using Maximum Likelihood. The resulting models exhibit significant improvements in predictive power over previous methods, while also using far fewer parameters than histogram-based methods. The method is demonstrated on travel data from two sources: geotags from a social image sharing site (Flickr), and GPS tracks from Shanghai taxis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Latent Factor Models of Travel Data for Travel Prediction and Analysis

We describe latent factor probability models of human travel, which we learn from data. The latent factors represent interpretable properties: travel distance cost, desirability of destinations, and affinity between locations. Individuals are clustered into distinct styles of travel. The latent factors combine in a multiplicative manner, and are learned using Maximum Likelihood. We show that ou...

متن کامل

به‌کارگیری متغیرهای پنهان در مدل رگرسیون لجستیک برای حذف اثر هم‌خطی چندگانه در تحلیل برخی عوامل مرتبط با سرطان پستان

Background and Objectives: Logistic regression is one of the most widely used generalized linear models for analysis of the relationships between one or more explanatory variables and a categorical response. Strong correlations among explanatory variables (multicollinearity) reduce the efficiency of model to a considerable degree. In this study we used latent variables to reduce the effects of ...

متن کامل

Bayesian representation learning with oracle constraints

Representation learning systems typically rely on massive amounts of labeled data in order to be trained to high accuracy. Recently, high-dimensional parametric models like neural networks have succeeded in building rich representations using either compressive, reconstructive or supervised criteria. However, the semantic structure inherent in observations is oftentimes lost in the process. Hum...

متن کامل

Anchored Discrete Factor Analysis

We present a semi-supervised learning algorithm for learning discrete factor analysis models with arbitrary structure on the latent variables. Our algorithm assumes that every latent variable has an “anchor”, an observed variable with only that latent variable as its parent. Given such anchors, we show that it is possible to consistently recover moments of the latent variables and use these mom...

متن کامل

Investigating Predictors of High School Students’ Negative Attitudes Towards Learning English by Developing, Validating, and Running a Questionnaire

The purpose of this study was to explore the predictors of negative attitudes towards learning English from L2 learners’ points of view. A mixed methods research approach was adopted with a sequential exploratory design, followed by an endorsement phase. Eighteen high school students in Fars province (Iran) were interviewed on the sources of negative attitudes towards learning English. Based on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012